Predation and the phasing of sleep: an evolutionary individual-based model

Alberto Acerbia,*, Charles L. Nunnb,1

a Centre for the Study of Cultural Evolution, Stockholm University
b Department of Human Evolutionary Biology, Harvard University

All mammals thus far studied sleep, yet important questions remain concerning the ecological factors that influence sleep patterns. Here, we developed an evolutionary individual-based model to investigate the effect of predation pressure on prey sleep. We investigated three ecological conditions, including one that assumed a dynamic interaction between predator and prey behaviour. In condition 1, we found that monophasic predators (i.e. with one sleep bout per 24 h) select for monophasic prey that sleep perfectly out of phase with predators. In condition 2, predators were monophasic but the safety of prey varied as a function of their activity (sleeping versus awake). In this condition, the prey adjusted their behaviour relative to one another, resulting in either greater or lesser synchrony in prey as a function of predator searching behaviour. Collectively, our model demonstrates that predator behaviour can have a strong influence on prey sleep patterns, including whether prey are monophasic or polyphasic (i.e. with many sleep bouts per 24 h). The model further suggests that the timing of sleep relative to predator behaviour may depend strongly on how other potential prey partition the activity period.

All mammals thus far studied sleep, yet important questions remain concerning the ecological factors that influence sleep patterns. Here, we developed an evolutionary individual-based model to investigate the effect of predation pressure on prey sleep. We investigated three ecological conditions, including one that assumed a dynamic interaction between predator and prey behaviour. In condition 1, we found that monophasic predators (i.e. with one sleep bout per 24 h) select for monophasic prey that sleep perfectly out of phase with predators. In condition 2, predators were monophasic but the safety of prey varied as a function of their activity (sleeping versus awake). In this condition, the prey adjusted their behaviour relative to one another, resulting in either greater or lesser synchrony in prey as a function of predator searching behaviour. Collectively, our model demonstrates that predator behaviour can have a strong influence on prey sleep patterns, including whether prey are monophasic or polyphasic (i.e. with many sleep bouts per 24 h). The model further suggests that the timing of sleep relative to predator behaviour may depend strongly on how other potential prey partition the activity period.

One recent comparative study, for example, found that the number of white blood cells covaries positively with sleep durations across species (Preston et al. 2009), while other studies found that sleep characteristics covary with aspects of brain size (Lesku et al. 2006; Capellini et al. 2009). Many recent phylogenetic comparative studies have focused on sleep duration, including the duration of rapid eye movement (REM) and nonrapid eye movement (NREM) sleep (e.g. Lesku et al. 2006; Capellini et al. 2008a). Other fundamental questions concern the phasing of sleep throughout the 24 h cycle (Tobler 1989; Ball 1992). In one compilation of data on sleep phases, for example, anthropoid primate species were found to exhibit monophasic sleep, in which they typically concentrate most of their sleep time into a single sleep bout per 24 h, while carnivores were polyphasic sleepers with many sleep bouts (Capellini et al. 2008b).

Based on comparative studies of mammalian sleep durations, it is also clear that ecological factors constrain the duration of sleep. For example, Capellini et al. (2008a) found that sleep durations are shortened when animals have high metabolic rates for their body size, consistent with foraging constraints that limit the time available for sleep. Capellini et al. (2008a) also found that when animals are more exposed to predation at sleep sites, their sleep durations decline (see also Allison & Cicchetti 1976; Lesku et al. 2006). In another study, Capellini et al. (2008b) used phylogenetic methods to investigate the factors that influence the phasing of sleep in various species.

* Correspondence: A. Acerbi, Centre for the Study of Cultural Evolution, Stockholm University, Lilla Frescativägen 7B, 10691 Stockholm, Sweden.

1 C. L. Nunn is at the Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02138, U.S.A.

E-mail address: alberto.acerbi@gmail.com (A. Acerbi).

© 2011 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
of sleep (see also Tobler 1989; Ball 1992). They again found evidence for some predicted ecological constraints, for example that polyphasic sleep is associated with small body size, which may reflect relatively higher metabolic rate and the need to shorten the time between foraging bouts. Capellini et al. (2008b) also predicted that polyphasic sleep is more likely under higher predation pressure, but they found no support for this prediction.

Sleep can also be investigated using modelling approaches (Mirolli & Parisi 2003; Beckman et al. 2007; Lima & Rattenborg 2007; Acerbi et al. 2008; Phillips et al. 2010). In this paper we describe a simulation model that builds on our previous study of ecological constraints and sleep by including predation risk (Acerbi et al. 2008). In the previous model, we investigated how the spatial distribution and the relative amount of food and sleep sites impacted the phasing of sleep and sleep durations. We found that increased travel distance between sleep and food sites favoured monophasic sleep, an effect that was driven by the costs of locating resources when switching between sleep and foraging. Similarly, when the rate at which food patches are depleted in the model was increased, sleep durations declined. This probably reflects selection on individuals to invest more of their limited time on foraging when food resources are more difficult to obtain.

Models can have different purposes. Here, our goal was to explore the role of predation in the timing of sleep, while also using the model to search for new insights and predictions for future tests. Our model is grounded in trade-offs between fitness-enhancing tasks, one of which involves the benefits of sleep, and in predator and prey behaviour over the daily cycle as a dynamic, competitive game (e.g. Kotler et al. 2002; Lima et al. 2005). The model we developed is individual based, meaning that we simulate local interactions at the level of individual agents (Grimm & Railsback 2005), and also evolutionary, in that the agents use evolutionary algorithms to solve ecological challenges that we designed. More specifically, in our evolutionary individual-based model, some characteristics of individuals are encoded in free parameters (e.g. an artificial genome) and optimized using evolutionary computation techniques involving genetic algorithms (Holland 1975). Genetic algorithms are a process inspired by natural selection in which the individuals that perform better on a task contribute more than other individuals to the next generation, and their ‘offspring’ inherit their artificial genome with a mutation rate. In this way, modellers can identify the range of values that are selected by the evolutionary algorithm under different selection pressures.

Using this framework, we generated situations in which evolutionary principles are applied to solve different ecological challenges. We then used the output from our simulated population to understand better the complexities of natural systems. Our investigation builds on suggestions that predation can influence the timing of prey sleep throughout the 24 h cycle (Capellini et al. 2008a), possibly in relation to the availability of alternative prey for predators and predator search behaviour (e.g. Lima et al. 2005). Based on comparative studies in mammals, it appears that predation influences sleep patterns, at least in terms of sleep durations (Allison & Cicchetti 1976; Berger & Phillips 1995; Lesku et al. 2006; Capellini et al. 2008a). Evidence also exists for changes in prey sleep patterns when individuals are exposed to predators (e.g. Lesku et al. 2008). These changes can be striking and have been linked experimentally to predation risk, for example in a population of Norwegian rats, Rattus norvegicus, which shifted from nocturnal to diurnal activity in the presence of a nocturnal predator (Fenn & MacDonald 1995). Examples such as these are probably only scratching the surface of more intricate interactions between predator and prey. Modelling provides an important, but underutilized, approach to elucidating the links between predation risk and sleep (Lima & Rattenborg 2007). Here, we assume a generalist predator, such that evolution of prey behaviour does not select for changes in predator behaviour (i.e. only the prey evolves).

We structured our study around the following three questions, which relate directly to the three conditions that we simulated.

(1) Monophasic predators: under what conditions does the circadian rhythm of predators influence circadian rhythms in prey? For example, do monophasic, nocturnal predators select for monophasic, diurnal prey?

(2) Relative safety at sleep sites: how does safety at sleep sites influence sleep patterns? If safety is more of a probabilistic than an absolute measure, does this alter sleeping patterns, possibly in interaction with other ecological factors such as foraging constraints?

(3) Dynamic predator searching based on prey activity. Lastly, we investigated how a predator’s searching behaviour influences patterns of sleep in a pair of independently foraging prey. In this case, the predator’s activity is a function of the behaviour of a pair of individuals (two prey), based on whether one or both of the prey were active in the previous hour. Does dynamic predator searching impact prey sleep patterns and create synchronous or asynchronous activity in the prey?

METHODS

We follow the ODD (overview, design concepts and details) protocol identified by Grimm et al. (2006) to describe our model.

Purpose

The purpose of the model is to investigate how sleep characteristics, such as the total duration of sleep and the phasing of sleep–wake cycles (number of sleep bouts) are influenced by temporal variation in predation risk. In particular, we studied three different conditions of predation risk that correspond to the three questions raised in the Introduction. Under condition 1, predators were active in fixed parts of the day, and prey were safe from predation when sleeping at a sleep site. Under condition 2, predators were again active in fixed parts of the day, but the risk of predation was a quantitative function of whether prey were sleeping or awake (see below). Lastly, under condition 3, the timing of predator activity was flexibly dependent on the activity of two prey in the previous hour, namely on whether they were both sleeping, both awake, or one was sleeping and one was awake. In this last condition, it was possible to assess how predation pressure influences the relative timing of sleep among prey (i.e. synchronous or asynchronous sleep).

State Variables and Scales

The simulation was run on a square lattice of 40 × 40 cells with a hard boundary (see Appendix Fig. A1). Habitat types were mutually exclusive, with each cell in the habitat matrix identified as either a sleep patch (i.e. a cell of the lattice in which prey can sleep), a food patch (i.e. a cell of the lattice in which prey can eat) or nothing. The number of sleep and food patches was fixed, even if their specific arrangement was subject to stochasticity and varied in each run of the simulation.

The highest hierarchical level in our model was the population. Specifically, each prey was part of a population of 100 noninteracting individuals on which the evolutionary algorithm acted. The central level of description in our model was the individual prey. Each prey had a location in the landscape. Prey also had two energy levels that were each adjusted positively when eating and sleeping occurred. One energy level concerned ‘sleep energy’ and the other...
concerned ‘food energy’. Lastly, prey had a circadian rhythm that was determined by 24 ‘genes’ (one for each hour of the day) that were subjected to natural selection by means of a genetic algorithm. Each gene could take one of two possible states that determined the actions of prey: sleep (or search for a sleep site) or eat (or search for a food site; see below).

The model also included a fixed number of predators. Predator activity varied depending on the three experimental conditions and is described in detail in the section Submodels. The effect of varying the number of predators is analysed in the Appendix.

The model was run in discrete time steps. We identify the following terms in this context: minute, hour, day, generation and simulation run. Prey and predators operated on time steps of 1 min. We used 1 h (lasting 60 min, i.e. 60 time steps) as the unit in the circadian rhythm of individuals, with 24 genes, one for each hour of a day, which determined the action of the individuals at any given hour in the 24 h cycle. A generation encompassed the life of a prey and lasted for 7 days. The prey population was held constant at 100 in each generation, and a simulation run covered 100 generations. Table 1 provides a summary of the parameters and their values.

Process Overview and Scheduling

After initializing the landscape with food sites, sleep sites and predators, the simulation proceeded at each time step by inspecting the appropriate gene (for a given hour) on a prey’s genome. Depending on what the gene specified, the prey stayed in the cell in which it was located or it moved and sought food or a place to sleep based on its circadian rhythm. After the prey’s states were updated, the states of predators were updated (see below), and, from that, subsequent effects on prey behaviour took place (i.e. if a predator encounter occurred). Finally, the state of the environment was updated. Food patch depletion was calculated and, if necessary, exhausted food patches were removed and new food patches were created in a random location of the lattice (see Submodels). At the end of the 7-day generation, reproduction took place, as described below.

Design Concepts

Fitness

Sleep and food energy were translated into separate fitness measures. Relationships between energy and fitness were nonlinear and calculated explicitly, with fitness bounded between 0.0 and 1.0 using a sigmoid function (see Appendix Fig. A2):

$$ f = \frac{1}{1 + \exp^{-\text{energy}}} $$

where \(f \) = fitness (see Acerbi et al. 2008). The overall fitness of prey was calculated by multiplying the two fitness measures so that:

$$ F = f_{\text{food}} \times f_{\text{sleep}} $$

Table 1 Main parameters and their values used in the simulation experiments

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of food sites</td>
<td>40</td>
</tr>
<tr>
<td>Number of sleep sites</td>
<td>40</td>
</tr>
<tr>
<td>Number of predators</td>
<td>40</td>
</tr>
<tr>
<td>Population size</td>
<td>100</td>
</tr>
<tr>
<td>Food depletion</td>
<td>60</td>
</tr>
<tr>
<td>Minutes of ‘paralysis’ after predation</td>
<td>60</td>
</tr>
<tr>
<td>Detection rate (condition 2)</td>
<td>0.0 to 1.0 (step=0.01)</td>
</tr>
</tbody>
</table>

The reasoning for using multiplicative fitness is that if a prey achieved zero energy for either food or sleep, its fitness was set to zero. We also investigated the use of additive fitness, and this produced qualitatively similar results to those presented here.

A successful predation event occurred when predator and prey were on the same cell of the lattice. Predation did not result in removal of the individual. Instead, predation ‘paralysed’ the prey for 60 min, thus preventing it from gaining fitness in that period (including searching for a food or sleep site if the prey was not currently on a site, see below). Thus, predation affected prey fitness by reducing the time available to acquire food or sleep energy. This paralysis has similarities to predation pressure in the real world, in which increased proximity to predators causes animals to shift from one activity to a state of vigilance, thus causing them to forgo the benefits of the previous activity. By comparison, removal of prey following a predator attack would introduce highly stochastic effects, potentially even resulting in extinction of the prey population at early stages of simulation runs, since the evolutionary algorithm requires multiple generations to optimize prey behaviour. The effect of varying the number of minutes of paralysis is analysed in the Appendix.

Sensing

Prey could only sense the cell in which they were currently located and could not make decisions about moving to neighbouring cells based on the presence of food sites, sleep sites or predators. Predators were also able to sense prey in their current cell, but not in other cells in the lattice.

Observation

For all conditions, we examined output from the last generation of each experiment, focusing on the proportion of monophasic sleepers in the population, the average number of encounters with predators, the average number of minutes of sleep in a day (i.e. based on actual behaviour rather than the genes coding behaviour, as sleep sites may not be found each time that a gene specifies sleep). Prey were defined as sleeping when in a sleep site and the genome indicates sleep, and defined as awake when feeding or moving through the lattice looking for a food patch or a sleep site. Prey that exhibited only one sleep bout during a 24 h period (including a single sleep bout that spans the end of one day and beginning of the next day) were classified as monophasic sleepers. We also recorded the structure of the genome of the prey with the highest fitness in each run. For condition 3, in which the behaviour of predators depended on the behaviour of two prey in the previous hour, we also quantified the degree of synchrony among prey in their sleep patterns. Synchrony between prey was indicated by the final value of an additional parameter (Sync) on which the evolutionary algorithm acted (see Submodels).

To ensure that the simulation reached a stable equilibrium, we required that the average fitness of the population exceeded 0.9 for all simulation runs that were analysed, which indicates that the prey were able to solve the ecological task.

Initialization

The habitat matrix was formed by placing 40 food and 40 sleep patches in random positions on the matrix (see Fig. A1). The prey and 40 predators were randomly located on cells in the matrix. Each prey was tested in an independent lattice with the same set of initialising parameters, but with stochastic differences in the distribution of food sites, sleep sites and predators. Energy levels for the agent were set to zero, which corresponds to a fitness of 0.25 (see equations 1 and 2). The starting conditions for the genome were randomly selected from among the two states (sleep genes...
and feeding genes), resulting in an expected distribution of 12 sleep genes and 12 feeding genes (actual numbers varied stochastically around these expected values).

Submodels

Movement

Prey moved through the lattice in a correlated random walk (Renshaw & Henderson 1981) with movement in increments of 45° (i.e. along flat sides or corners of cells on the matrix). Hence, their probability of major changes of direction in a single step was lower than in a pure random walk. The correlated random walk model enabled individuals to explore the lattice better when searching for sleep and food patches. Specifically, at each time step, prey modified their current orientation with a random value between −15° and 15°, and they changed their actual direction in the lattice in the 45° increments when surpassing 22.5° thresholds. The lattice had a reflective boundary, such that when a prey hit a boundary, its direction reversed. For example, a prey moving at a 90° orientation would automatically change its orientation to 270° after hitting an edge of the lattice.

Prey remained in the same cell during a time step only when they located a food or sleep patch corresponding to their genetic coding for a given hour of the day (sleep or eat). If the gene specified ‘sleep’, the prey moved until it located a sleep site. It then remained at the sleep site until the genome specified another action. If the gene specified ‘eat’, the prey moved until it located a food site. It then remained at the food site until either the genome specified a new action or until the food patch was depleted.

Predators moved through the lattice in a random walk, such that they moved to one of the eight adjacent cells (i.e. flat sides and corners) with equal probability, and with a reflective boundary as described for the prey.

Predator's behaviour and predation

As noted above, predation occurred when a predator and a prey were located in the same cell, and we modelled the behaviour of a generalist predator. The probability of predation varied according to the conditions that were simulated, as described below. When a successful predation event occurred, the prey stopped its activity for 60 min, while the predator continued its normal activity. During this period the prey did not gain any fitness while its energy continued to decline. The specific details of predation risk (probability) were as follows.

Condition 1: predators were active in the first 12 h of the day and not active otherwise. Prey were completely safe when sleeping: when a predator was active, if it happened to move to a cell in which a prey was sleeping, the prey did not experience predation.

Condition 2: predators were active in the first 12 h of the day and not active otherwise. The variable detection rate (d) controlled the probability that, when a predator happened to move into a cell occupied by a prey, it caused paralysis in the prey. This probability depended on the state (sleeping versus awake) of the prey. In particular, if d was equal to zero, prey were safe when sleeping (i.e. if they encountered a predator they had 0% probability of being paralysed when sleeping and 100% if they were awake). If d = 1, prey were perfectly safe when awake (i.e. if they encountered a predator they had 100% probability of being paralysed when sleeping and 0% if they were awake). Values between 0 and 1 reflected a more probabilistic measure of predation. If, for example, d = 0.5, prey had the same probability of experiencing predation (50%) when sleeping and when awake. Thus our use of d assumes that agents experience a trade-off in safety when asleep versus awake. We ran 100 simulations in which the value of d varied from 0.0 to 1.0, in units of 0.01.

Condition 3: to investigate how coordinated activity among prey influences a dynamically searching predator, we paired an individual ‘focal’ prey with a ‘partner’ prey. The evolutionary algorithm acted on the genome of the focal prey and a single continuous parameter (Sync) that determined the probability that each gene of the partner was equal to each gene of the focal prey. Therefore, high values of Sync represented pairs that were highly synchronized in their sleep patterns, while low values of Sync represented pairs that were not synchronized. At the beginning of each run of the simulation, the value of Sync was randomly selected from a uniform distribution ranging from 0 to 1. Mutations occurred at a rate of 5%, and when they occurred, the value of the parameter was randomly reinitialized to a new value on the uniform distribution (simulations in which mutations produced an increase or decrease in the Sync parameter gave qualitatively similar results).

In our model, we assumed that the two prey lived in nonoverlapping home ranges. More specifically, we simulated prey on independent and not communicating lattices, with two different sets of predators. The behaviour of the pair of prey on these independent ranges then determined the predators’ behaviour in both lattices. This situation is analogous to a group of prey that can individually modify their behaviour in response to predation and, by maintaining separate lattices, we were able to avoid artefacts that might occur if prey compete for resources or influence predation risk through dilution or other effects. Hence, these simplifying assumptions made the ecological conditions comparable to the conditions in the other simulations.

The behaviour of the predators depended on the activity of the prey in the previous hour. We tested two specific subconditions. At each subsequent hour, predators were active if, in the previous hour, at least one prey was active (subcondition a) or both prey were active (subcondition b). If a predator was active and happened to move to a cell occupied by a prey, it ‘caught’ it independently of the prey’s state (sleep or awake); in other words, unlike the other conditions, the prey were not safe while sleeping or awake. We assumed that predators were active in the first hour at the beginning of the simulation run.

Energy dynamics

Prey acquired sleep energy upon finding a sleep site. In the same way, food energy was acquired when a prey located a food site. Both sleep and food energy declined when prey were searching for food patches or sleep sites, and for 60 min after experiencing predation. In all simulations presented here, the rate of loss was a third of the rate of gain when prey were on a food or sleep site, as based on initial experiments to determine a level that ensured that the populations were able to find adaptive solutions in most of the experimental conditions (see Acerbi et al. 2008).

Food depletion

The time until a food patch disappeared was held constant across simulations at 60 time steps; in other words, a food patch was depleted after a prey had foraged in it for 1 h. Once the energy for a food patch was depleted, the patch disappeared, and another patch was generated at a random, unfilled location in the lattice, where unfilled means that the cell had neither a food patch nor a sleep patch. Unlike food patches, sleep sites did not disappear: thus, prey were not required to move to a new sleep site to continue obtaining the benefits of sleep.

Reproduction

At the end of each generation, the 20 prey with the highest total fitness levels produced five offspring each. The remaining 80 individuals in each generation did not reproduce, thus maintaining a constant population size of 100 individuals from one generation.
to the next. Among the genomes that were passed to the next generation, mutations occurred at a rate of 5% per gene. For condition 3, the 20 prey with highest fitness additionally passed the value of Sync to the next generation. This parameter underwent a mutation rate of 5%, which resulted in reinitialization of the parameter to a random value (see Submodels).

RESULTS

Condition 1: Monophasic Predators

In condition 1, predators were active in the first 12 h of each day and prey were completely safe when sleeping. We compared 50 simulation runs in condition 1 with a control condition of 50 simulation runs with the same ecological conditions, but without predation risk. Prey were unable to find a strategy that completely eliminated encounters with predators (average number of predator encounters for each prey individual: 16.26 ± 1.14). We found strong evidence that monophasic activity in the predators favoured the evolution of monophasic activity in the prey (Fig. 1). Specifically, the average proportion of monophasic prey in the experimental condition was 0.75 ± 0.17, while the average proportion of monophasic prey in the control condition was 0.35 ± 0.22 (Wilcoxon test: Z = −7.3212, N = 50, P < 0.0001). Compared to the control condition, in which predators were absent (Fig. 2a), under predation pressure we found strong selection for prey to sleep when predators were active and to feed when predators were sleeping (Fig. 2b).

Condition 2: Monophasic Predators with Variable Predation Risk

In condition 2, predators were again active only in the first 12 h of each day, but the probability of predation was a function of the state of the prey (sleeping versus awake), as measured by d. Values of d less than 0.5 reflected a situation in which prey were relatively safer when sleeping, and values of d greater than 0.5 reflected that prey were relatively safer when awake. From simulations in which we systematically varied d, we found that predation influenced when prey sleep, and also the amount of sleep that they could afford during a day. When predators were active, that is, in the first 12 h of the day, prey tended to sleep if the value of d was roughly less than 0.5 and to be awake otherwise (see Fig. 3). This effect was clearly visible for extreme values (close to 0.0 and to 1.0) while in the middle (close to d = 0.5) patterns of sleep were more random.

Figure 3 also revealed that prey spent more time sleeping when d < 0.5; when they were ‘safer when awake’ (i.e. d > 0.5), they invested more of their time in foraging. We investigated this effect further by examining the control condition without predators, which allowed us to estimate the optimal duration of sleep based on only the distribution of food and sleep sites. This optimal duration of sleep was 638 min (horizontal line in Fig. 4). Under predation risk, we found that prey slept more than this optimal value when they were safer when sleeping (i.e. d < 0.5), and less than this optimal value when they were safer when awake (d > 0.5; Fig. 4). However, this effect was not found when prey were perfectly safe when sleeping or awake (d = 0 or d = 1), or when the

![Figure 1](image1.png)

Figure 1. Effect of monophasic predators on the proportion of monophasic prey. Box plots of the proportion of monophasic prey in 50 replications without predators (Control) and in 50 replications with predators (Predators). Boxes represent the interquartile range of the data. The horizontal lines inside the boxes indicate the median values. The horizontal lines outside the boxes indicate the minimum and maximum values. Circles represent outliers. Predators displayed a fixed behaviour of being active from hours 1 to 12.

![Figure 2](image2.png)

Figure 2. Prey’s internal clock. The genome (internal clock) of the best-evolved prey in 50 replications (a) without predators and (b) with predators. Predators displayed a fixed behaviour of being active from hours 1 to 12. Black cells: ‘sleeping’ genes; grey cells: ‘feeding’ genes.
The presence of monophasic predators tended, as in condition 1, to select for monophasic prey. However, we again found asymmetries in model output depending on whether prey were safer when sleeping or awake: the tendency towards monophasic sleep was more prominent when prey were safer when sleeping, as revealed by a negative correlation between detection rate and proportion of monophasic prey in the simulation ($r_S = -0.46$, $N = 100$, $P < 0.0001$; Fig. 5). Moreover, we observed fewer predator encounters when prey were safe when awake, as compared to being safe when sleeping (Fig. 6). This result, together with the
asymmetry in the tendency of prey to be monophasic, appears to reflect underlying foraging constraints, with prey taking greater risks in gaining food energy when $d < 0.5$, as compared to $d > 0.5$, where it was easier for the prey to gain both food and sleep energy while predators were asleep (see Discussion below).

Condition 3: Predator Searching Based on Prey Activity

In the last condition, the behaviour of predators depended on the behaviour of two prey in the previous hour. Results revealed that this dependence strongly influenced the synchrony of the prey in their activities (Fig. 7). When predators were active if at least one prey was active (subcondition a), the final average value of the Sync was high, indicating prey were highly synchronized in their sleep pattern. This effect occurred because periods of synchronous sleep in the prey in one hour caused predators to sleep in the next hour, with the prey then safe for the next hour to forage while the predators slept.

By contrast, when predators were active only when both prey were active in the previous hour (subcondition b), prey tended to sleep asynchronously. In this way, prey maximized their activity period by inducing greater inactivity in the predators.

Prey synchrony has a direct effect as an antipredator strategy as can be seen in the relationship between the final average value of Sync and the average number of predator encounters for each run of the two subconditions (Fig. 8). In subcondition a (Fig. 8a), where synchrony is beneficial to the pair of prey, we found a significant negative correlation between the number of predator encounters and the prey synchrony ($r_S = -0.84, N = 50, P < 0.001$). Conversely, in subcondition b (Fig. 8b) the correlation was positive ($r_S = 0.61, N = 50, P < 0.001$), thus showing that less synchronized prey are relatively safer.

DISCUSSION

Our simulations provide new insights into how predator behaviour might impact prey sleep characteristics (see also Lima et al. 2005; Lima & Rattenborg 2007). We studied three different scenarios of predation pressure that presented different ecological challenges for the agents. To recap these conditions and put the results into biological context, in condition 1 predators exhibited fixed monophasic behaviour and animals at sleep sites were assumed to be perfectly safe from predation. As expected, this safety made it advantageous for prey to behave asynchronously with respect to predators, namely to sleep when predators were active and to forage when they were inactive (e.g. Fenn & MacDonald 1995). From this condition we conclude that monophasic predators favour monophasic activity in the prey.

In condition 2, predators had the same fixed 12 h activity behaviour but the safety of the sleep site varied from a condition of perfect safety ($d = 0$, analogous to condition 1) to a condition of extreme risk ($d = 1$). Prey adapted their circadian rhythm to the relative safety of sleep sites and predator activity, tending to sleep when predators were active and to forage when they were inactive (Fig. 7). Variable predation risk also impacted the quantity of sleep. If prey were relatively safer when sleeping, they tended to sleep more at times...
when predators were active and to concentrate their foraging activity in the remaining 12 h of the day, resulting in less foraging. When they were safer when awake, they shifted their activity to include a greater proportion of foraging each day.

Similar to condition 1, when predators presented a monophasic sleep pattern, this generally favoured monophasic sleep patterns in prey, independently of the relative safety of sleep places (of course, as noted above, the timing of the single phase of sleep depended on the safety of sleep places). Under the ecological conditions simulated here, we also discovered an asymmetry between low and high values of the detection rate. Specifically, safety at the sleep site increased the tendency for the prey to exhibit a monophasic sleep pattern and to spend more time sleeping. We also found an asymmetry in predator encounters, with greater safety obtained when prey were safe during foraging ($d > 0.5$). Thus, under similar conditions in the wild, greater safety at the sleep site could lead, paradoxically, to greater predation risk.

What drives this asymmetry in behaviour relative to d? At least two factors are likely to be involved. First, a basic asymmetry between sleeping and eating activities is related to the fact that food patches are depleted with use while sleep sites are not. During feeding, the depletion of food patches forces the prey to move from one patch to search for a new patch. The costs associated with switching activity make feeding a more time-consuming activity than sleeping (see Acerbi et al. 2008) as seen in the control condition without predators, which indicated that the underlying ecological conditions favoured approximately 11 h of sleep and 13 h of foraging. For this reason, in the condition ‘safe when sleeping’ ($d < 0.5$), prey experience strong selection to sleep for the entire 12 h when predators are active and to forage the rest of the time. With the condition ‘safe when awake’ ($d > 0.5$), prey do not sleep for all of the 12 h in which they are safe from predation, resulting in weaker selection pressure towards monophasicity and shorter sleep times.

Second, because prey are defined to be awake when they are feeding or looking for food or sleep sites, it is more dangerous to have a ‘feeding gene’ between a sleep phase in the condition ‘safe when sleeping’ ($d < 0.5$) than to have a ‘sleep gene’ between a foraging period in the condition ‘safe when awake’ ($d > 0.5$). In the former case, the feeding gene directly translates to 60 min of risk because the prey is already active and remains so until, and if, a sleep site is found. Again, this helps to explain asymmetry in the degree of monophasicity and the relative difference in the number of predation encounters for $d < 0.5$ and $d > 0.5$.

In a final set of simulations, we investigated more dynamic effects of prey activity on predator activity. Thus, in condition 3, the predators’ behaviour was flexible and depended on the behaviour of the prey in the previous hour. In two subconditions, we investigated the relationship between the circadian rhythms of the two prey and the effect that predation pressure can have on this relationship. When predators were active if at least one prey was active (subcondition a), prey tended to synchronize their activity. However, when predators were active only if both prey were active in the previous hour (subcondition b), an asynchronous sleeping pattern emerged. In this way, the prey could benefit from periods in which predators were inactive, specifically in the short period following synchronous sleep (as this induced sleep in the predator).

As with any model, the conditions simulated here represent gross simplifications of the real world. This is necessary to make progress with a theoretical model, yet several aspects of this simplification deserve consideration. First, the predator and prey moved in a simple way, which was essentially random (although the ranging actually differed slightly between the two organisms, with prey moving in correlated random walk to explore the environment better in order to find food and sleep patches). We might imagine that prey with a mental map would be better able to locate resources, and, similarly, a ‘smart’ predator would probably hunt in areas of the simulation space that contain prey food or sleep sites (Bennett 1996; for mental maps in primates see Byrne 2000; Normand & Boesch 2009). In addition, both predator and prey are likely to be able to sense the other and to respond appropriately. While this was taken into account to some extent in condition 3, these and other aspects of predator–prey interactions could be implemented in more sophisticated models (see e.g. Luttbeg & Schmilz 2000). In many cases, these models could be parameterized with real-world data on specific organisms.

Second, we assumed that evolutionary changes in activity were only possible for prey. In other words, the predators had fixed behavioural strategies in terms of their activity periods, producing evolutionary change in prey but not predators. Although we varied the predators’ behavioural strategies across three conditions (and two subconditions), in a real-world setting the predators would be capable of coevolving with the prey, and both predators and prey might use more facultative strategies. In the context of coevolution, for example, the asynchronous pattern of predator–prey activity would be unlikely to be as stable as in condition 1, at least for a two-organism system, because predators would be expected to change the timing of their sleep–wake cycle in order to be active when prey are awake. This of course depends greatly on the behaviour of other species in the predator’s diet, since availability of other, more plentiful prey may enable another prey species to escape by altering its circadian rhythm (Lima et al. 2005). A predator–prey arms race could be explored in future simulations, where we might expect to find higher rates of evolution and an absence of a stable equilibrium.

Finally, we assumed that prey exhibit only two behaviours: sleeping and feeding. As future extensions, it is possible to model additional behaviours, such as resting, mating or caring for offspring. The effects would depend on how those behaviours influence risk, and a number of different scenarios are possible.

In a recent comparative study of mammals, Capellini et al. (2008b) failed to find support for a link between some aspects of sleep architecture, such as the number of sleep bouts and sleep cycle length, and measures of predation pressure. With regard to the phasing of sleep, they specifically tested the prediction that higher predation pressure favours polyphasic sleep, based on the idea that polyphasic sleep reduces the duration of individual sleep bouts when animals are vulnerable to predation. Capellini et al. (2008b) found support for energetic and foraging constraints as factors that favour polyphasic sleep. Here, we focused on a somewhat different question by investigating how the behaviour of a single predator, rather than predation pressure overall, influences prey behaviour in relation to safety at the sleep site. We found that predation pressure, at least in some cases, could override the effects of ecology on sleep architecture by favouring monophasic sleep (Acerbi et al. 2008). More generally, our model suggests that predation pressure can have an impact on sleep patterns in prey, but this depends more on predator activity patterns than on reducing vulnerability by subdividing sleep bouts into shorter segments. Thus, our results are more in line with other comparative work that found links between measures of predation risk and the duration of sleep (Allison & Cicchetti 1976; Lesku et al. 2006; Capellini et al. 2008a), and with field studies of prey sleep in relation to a primary predator on that prey (Fenn & MacDonald 1995).

Our model further indicates the kinds of data that are needed to understand better the links between sleep and predation (see also Lima et al. 2005). For example, it will be important to obtain estimates of safety at the sleep site, and to assess how a behaviourally flexible predator adjusts its activity in relation to prey activity. Similarly, our model reveals that we need more information on how the distribution of resources impacts actual sleep patterns,
where resources refer to both food sites and sleeping sites, and more details on how the availability of alternative prey impact sleep patterns in other prey species. Lastly, construction of safe sleep sites, such as nests or burrows, should increase safety of sleeping. However, such structures may increase risk when travelling to and from sleep sites, as they offer an easy to discern clue for patterns of prey movement. This effect also could be modelled and investigated using experimental or observational methods.

In conclusion, our model provides new insights into the links between sleep and predation. By showing that many expected patterns emerge, for example in condition 1, we can be more confident of the patterns that are less intuitive in other conditions, such as conditions 2 and 3. More generally, our model shows that predation can exert a strong selection pressure on sleep patterns. We also found that differences in safety at sleep and foraging sites could create different dynamics, with the depletion of food resources tending to favour some foraging activity even at times when predation risk is high. Thus, an understanding of mammalian sleep will require more information on a wide range of ecological factors involving the distribution of resources, availability of safe sleeping sites and predator searching behaviour.

Acknowledgments

We thank Patrick McNamara, Brian Preston, Isabella Capellini and Volker Grimm for helpful discussion related to the model and description of the results. A.A. was supported by NIMH grant number 1RO1MH070415-01A1 and by Stockholm University. C.N. was supported by Harvard University.

References

APPENDIX

Further Analysis of the Parameter Space

In addition to the main results, we performed further analyses that systematically varied important parameters of the simulation. In a previous model with the same conditions but without predators (Acerbi et al., 2008), we had already explored the effects of the number of food and sleep patches, the degree to which food and sleep patches overlapped in the environment (i.e. if food and sleep patches were close or distant between them), and the rate at which food patches were depleted. Here, we concentrate on the two main parameters related to predation: the number of predators (condition 15), and the number of minutes of ‘paralysis’ when a predator is encountered (condition 25).

Both conditions replicate condition 1 of the main model, where predators are active in the first 12 h of the day and prey are safe when sleeping.

In condition 15, we ran 100 simulations varying systematically the number of predators from 20 to 120 (in the main results the number of predators was fixed at 40). In condition 25, we ran 100 simulations varying systematically the number of minutes of ‘paralysis’ from 20 to 120 (in the main results this parameter was fixed at 60).

For both conditions we collected, as in the main model, the proportion of monophasic prey in the population, the average number of minutes of sleep in a day, and the average number of encounters with predators.

Proportion of monophasic prey

In condition 15, the proportion of monophasic prey was significantly correlated with the number of predators (rS = 0.20, N = 100, Lima, S. L. & Rattenborg, N. C. 2007. A behavioural shutdown can make sleeping safer: a strategic perspective on the function of sleep. Animal Behaviour, 74, 189–197.

meaning that more monophasic predators selected for more monophasic sleep in prey. However, even lower numbers of predators with respect to the condition of the main model (number of predators = 40) were sufficient to select for monophasicity. Indeed, if we consider the runs in which the number of predators was less than 40, the average proportion of monophasic prey was 0.72 ± 0.14, while in the control condition without predators it was 0.31 ± 0.23 (Wilcoxon test: \(Z = -4.4331, N = 20, P < 0.0001 \)).

In condition 2S, the proportion of monophasic prey was also significantly correlated with the duration of paralysis (\(r_S = 0.27, N = 100, P < 0.01 \)) and, also in this case, fewer minutes of paralysis were enough to produce monophasicity (average proportion of monophasic prey for runs with minute of paralysis from 20 to 60: 0.78 ± 0.14; control condition without predators: 0.36 ± 0.23; Wilcoxon test: \(Z = -6.7108, N = 40, P < 0.0001 \)).

Average number of minutes of sleep in a day

The average number of minutes of sleep in a day in condition 1S was significantly correlated with the increase in the number of predators (\(r_S = 0.78, N = 100, P < 0.0001 \); Fig. A3). We found the same effect in condition 2S, with sleep duration positively correlated with the increase in duration of paralysis (\(r_S = 0.62, N = 100, P < 0.01 \); Fig. A4). In both cases the increase in the time spent sleeping by prey reflects the higher impact of predation risk.

Average number of predator encounters

The average number of predators encountered in condition 1S was significantly correlated with the increase in the number of predators (\(r_S = 0.84, N = 100, P < 0.0001 \); Fig. A5). In condition 2S there was also a significant correlation, but of negative sign (\(r_S = -0.95, N = 100, P < 0.0001 \); Fig. A6), with a longer duration of paralysis reducing the number of predator encounters.

Figure A1. The landscape. Distribution of sleep sites (black squares) and food sites (grey squares) in the lattice. The number of sleep and food sites was fixed at 40 in all conditions. The black dot at the centre of the lattice represents an individual prey.

Figure A2. Energy/fitness transformation. The curve shows how the energy (X axis) is transformed into the actual fitness of the prey (Y axis). See equation (1) in the main text.

Figure A3. Effects of the number of predators on the average number of minutes spent sleeping. Average number of minutes spent sleeping in 100 replications varying the number of predators from 20 to 120. Solid line is a linear fit of the data.
Figure A4. Effects of the number of minutes of ‘paralysis’ after predation on the average number of minutes spent sleeping. Average number of minutes spent sleeping in 100 replications varying the number of minutes of paralysis after predation from 20 to 120. Solid line is a linear fit of the data.

Figure A5. Effects of the number of predators on the average number of predator encounters. Average number of predator encounters in 100 replications varying the number of predators from 20 to 120.

Figure A6. Effects of the number of minutes of ‘paralysis’ after predation on the average number of predator encounters. Average number of predator encounters in 100 replications varying the number of minutes of paralysis after predation from 20 to 120.